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P R E FA C E

In previous papers and treatises the properties of the 
socalled jet-wave have been discussed and a series of 

its applications have been described1. In all the cases 
referred to the jet-wave was produced from an electri
cally conductive liquid jet, preferably a mercury jet, and 
the conductivity was not merely an essential condition 
for the production of the wave but also for the vari
ous applications. (The jet-wave interruptor, the jet-wave 
commutator, the jet-wave oscillograph). At a certain stage 
it occurred to the author that a new application of 
possibly far-reaching consequences might be made of a 
periodic jet-wave by using it for the production of a 
vibratory motion synchronous with the wave. 
And so the investigation dealt with in the present paper 
was taken up after some preliminary observations on the

1 1. Nye Ensrettere, og periodiske Afbrydere. København 1918.
2. Development of the Jet-Wave Rectifier, “Engineering”. September 

9. and 16. 1927.
3. Den konstruktive Udvikling af Straalebølgeensretteren. Elektro

teknikeren Nr. 23. 1927.
4. Güntherschulze. Die konstruktive Durchbildung des Quecksilber- 

Wellenstrahl-Gleichrichters. Elektrotechnische Zeitschrift, 1928 pg. 1224.
5. The Jet-Wave and its Applications, “Engineering” Sept. 14. 1928.
6. Theory of the Jet-Wave. Vidensk. Selsk. math.-fys. Medd. IX, 2. 

1919.
1
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said motion had been made. It proved impossible — as 
usual — to solve the differential-equations involved in even 
the simplest case of motion (the see-saw motion) in terms 
of available functions. With a view to orientation the wave 
was therefore provisionally replaced by a simpler but similar 
system, i. e. by that of the twin jet-chain. The latter is by 
no means a purely abstract conception, on the contrary it 
may easily be produced and seems per se adaptable to a 
good many practical applications. The investigations on 
the motion produced by jet-chains are found in the first 
chapter of the present paper. — It was, however, found 
that a very characteristic observation pertaining to the 
original system with an ordinary jet-wave did not tind its 
explanation by replacing the wave by the twin jet-chain. 
The observation referred to consisted in the fact of a 
simple see-saw, without external controlling or directive 
moment, exhibiting a fictive directive moment keeping 
the see-saw vibrating, under the influence of the wave, 
about a position perpendicular to the axis of the latter. 
This observation was for some time found very puzz
ling. It could be shown that with a regular periodic 
wave of constant amplitude no such fictive directive mo
ment would occur. Eventually it turned out that the ob
served quality of the see-saw motion could be carried back 
to that property of the ordinary jet-wave consisting in its 
amplitude increasing steadily with the distance from the 
starting-point of the wave. Especially could it be shown that 
the fictive directive moment was particularly pronounced 
with the electromagnctically produced wave. The second 
chapter of the present paper deals with the relations here 
referred to. It is believed that the contents of the two 
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chapters will prove a suitable means for the discussion of 
various practical applications of the motion considered.

I owe thanks to the Trustees of the Carlsberg Fund 
for having enabled me to take the time required for the 
work.

Physical Laboratory II, The Boyal Technical College,
Copenhagen, October 1928,

Jul. Hartmann.
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The Jet-Chain-Vibrator.

1. The damping Effect of a Liquid-Jet.

In tig. la 7) designates a disk which is hit by a liquid 
jet J with a mass per cm m and a velocity zz. The liquid 
of the jet will be reflected in the shape of a nearly cir

Fig. 1 a—b. Oscillatory Systems
hit by Jets.

cular plane film fig. 2. Thus the 
particles of the jet will, during 
the collision with I), lose their 
total forward velocity zz and 
consequently they will act on I) 
with a force

(1) Fo = mi)2, 

that is to say, if J) is al rest
• drelatively to the nozzle of J. If 1) has itself a volocitv

" dt 
in the direction of J, the force will be 

(2) 

thus smaller or greater than Fo according 

sitive or negative i. e. going in the direction 

dx .as ,, is porn
of or against

the motion of ,7.
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F(3) m v2 — 2 nw ■ (Lt

(It

from which it is seen that the influence of J on the motion 
of I) is that of a (hiving force nw2 combined with a

Fig. 2. Mercury Jet-Film.

damping force 2nw dx 
dt ’ If two jets JtJ2 tig. lb of the same

velocity and mass per cm hit the system I\I)2 from op
posite sides the two driving forces compensate each other,
while the damping forces are added. This is not only true 

in case of j being small compared to u, but it holds good 

in any case. For the resultant force originating from the
two jets is obviously

The twin-jet system in fig. lb thus constitutes a means 
for the introduction of a damping of a definite and easily 
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calculable size. If especially the twin-jet damper is applied 
to an oscillatory system like that in tig. 1 b the motion of 
this latter system will be determined by

(5) + (P + 4 nw) + kx = X,

m0 being the mass, p the damping factor and k the direc
tive force of the system, while A’ stands for the driving 
force. Provided

(6) (p 4- 4 mu)2 < 4 km0

the motion will be that of damped vibrations with a period 
approximately equal to

and with an amplitude

p + 4 mv ,

(8) A = Ao • e = Ao e~at.

In order to convey an idea of the effectiveness of the 
damping device we may consider a system of which 

/n0 = 1000 g, k = IO1’.The period will be ---- or ah. — sec
10/10 10

We will assume the system to be hit by two mercury-jets 
with a velocity 700 cm/sec. and a diameter 0.5 cm. The 

77" J
mass m per cm will then be — • — • 13.6 = 2.67 g/cm and 4 4
nw — 1.87 • 1O'! g/sec. If p is negligible the condition (6) 
is fulfilled (4 nw)2 being 56-IO6 while 4 km0 = 4 • 109. 

Furthermore a — —= 3.74. Thus during one period 

the amplitude is reduced to e~ 3 74‘0-2 = 0.47 and in 6 
periods to e~4 45 = 0.01 of its original value.
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2. The Nature of the Jet-Damper.
An investigation carried out with mercury-jets hitting a 

disk with a diameter somewhat greater than that of the 
jet showed that the radial velocity of the reflected mercury 
particles was very nearly equal to the velocity of the jet 
if the disk was at rest relatively to the nozzle of the jet. 
From this we conclude that if the disk

djchas a velocity in the same direction at
as the jet, the radial velocity of the 
reflected particles will be equal to the

dxrelative velocity v—~ . This conclusion 

is supported through the following con
sideration.

If the disk D, fig. 3, is moving up 
against the jet with the velocity it 
will be acted on by a force m(v + v^2. 
During one sec. D will meet a quantity of liquid equal to 
7?i(z> + zq) and it will supply a work

(1) IV = /7z(z? +zq)2-zq,

to the said mass of liquid. This work will have its equi
valent in the excess of kinetic energy with which the liquid 
leaves I). The said excess is obviously

(2) E = ¿> m (v + + m (v + p2

zz indicating the radial velocity of the liquid leaving the 
disk. To understand the second term v2 in the brackets it 
must be noted that the reflected liquid receives the velocity 
of D during the collision. Equalizing E and zzz (zz + zq)2 • zq 
we get
(3) ZZ = V + Zq .

I

A

Fig/3. Oscillatory Sys
tem hit by a Jet.
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In just the same way it is found that u — d — if I) is 
moving in the same direction as the jet with the velocity

Only in this case it is the jet which supplies work to 
the disk, consequently losing kinetic energy.

Having thus derived the relation (3) we may examine 
the shape and motion of the film in the case of the disk 
performing a simple harmonic motion

(4) x = x0 sin col.

We consider the film as consisting of particles which 
move on independently of each other. The motion of such
a particle will, when it has left D, he determined hy the
two sets of equations

(5)

(6)

d2x
0,

dx
X = f + c2dt2 = dt =C1’

d2r
0,

dr

dt2 = dt= /• = btt + b2

If the particle in question leaves I) at the moment Zo 
we have

tq = x0 w cos a) /0, bt — i) + ,r0 ft) cos ft) t0, 
Cg *4 o sin ft) /q æo cos ft) fß * fß,
b.¿ = — (f + .Tß ft) COS ft) to) • t0.

Thus

(7) x — o?0 sin w/ß + .Tßft) cos ft)f0-(/ — fn).

(8) r = (p + xoft) cos (ûto)-(t — t0).

The equation of the curve of intersection between the film 
anda plane through the axis of the jet — and of/) — al the mo
ment t would be obtained if we could eliminate f0 between (7) 
and (8). The practical way to find the curve of profile is to fix
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a value for t, say 27’iw = and then to calculate æ and 

r corresponding to a series of values of ¿0. The result of 
such a determination has been reproduced in fig. 4. The 
abscissae are here the distances from the axis of the re

flecting disk measured in terms of the wave-length z = vT, 
while the ordinates are the „deflection” of the film also 
measured in terms of Z. The curve may thus be taken to 
represent the system of equations

(7 a)

(8 a) 1 v^Tlk COS 2 7Ï ~ •——1
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k designating and being assumed A
to have the value 0.1. In the figure 

in the case considered 
the two lines ~° mark

the extreme positions of the disk. In these positions the 
disk will reflect the liquid along lines perpendicular to the 
axis of the disk and with a velocity equal to v. We shall 
therefore expect to find particles of the film in the said 
lines with regular intervals of Â. In fig. 4 ala2. . . byE, . . .
represent such particles.

The character of the jet-damper is now fairly clear. 
The damping originates from a radiation of kinetic energy 
and the carrier of this energy is the reflected jet. It is easy 
to derive an expression for the energy radiated per period 
or per second. The kinetic energy supplied to the reflected 
liquid in the time dt was

Remembering that x = x0 sin w/ and — — æ0co cos (at= u0 

cos dot and integrating over a period T we find 

(10) ET — moxQit)2T — muul ?

or the energy radiated per sec.

(11) E = niDiil.

The same expression is obtained by considering the work 
supplied by the oscillatory system. In the lime dt this 

work is just represented by the last equation (9), in + 

being the force with which the mercury jet is acted on and

• dt the way through which the force is acting. Finally 

we may derive (10) or (11) by remembering that the jet gives

f/x\
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rise to a damping force mv 

this force in the time dt is

dx
dt'

The work done against

obviously

Introducing — = u0 cos ol and 
we get the expression (10).

integrating over a period

3. Motion of a Body hit by the Jet.
We may now consider certain simple types of motion 

produced by the jet. We shall first think of a circular disk 
hit by a jet passing along the axis of the disk, fig. 3. The 
motion of the disk is determined by

(1)
dx V2 
d/J

if we assume that no frictional forces are acting. We solve 
dxthis equation by putting — = z, thus getting

(2)

The solution is

(3)

from which

(4)
dx _ zn0 
dt mt +

from which again by integrating we get

.r = vt------- log nat (mt + ct) + c2.m
(5)
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If X

Cl =

(6)

and

(7) log nalX

 dx— x0 and — — u0 al the moment l = 0 we find 
777O >( , 777() . «’nand c2 — 4---- log nal — , thusi’ — zz0 “ in v — n(}

As an example we shall consider a projectile of mass 
7Z7O = 20 g Hying with a velocity zz0 — 100000 cm/sec against 
a mercury jet with a velocity 700 cm/sec and a diameter

lime

(S)

and in the case considered / ab.

which the projectile will

(9) m

get

0.5 cm.
2.67 g/cm thus mu = 1.87-103. 
it takes to stop the projectile.

= 10.8 •10~3 sec or
sec. Introducing (8) 
through 
velocity:

in (7) we furthermore get the
Il y before losing its

»0

«o “”

X =

1
100 

distance

The mass per cm of this jet was found to be 
From (6) we find the 

dxPutting — = 0 we

t = "»o
mn

logzz0—n in

which in our case gives x = 7.5(1.007 — 4.969) = —29.8 cm.
The projectile will thus be stopped within 30 cm and in 

, 1about sec.

It is still possible to solve the problem if the motion of the 
body hit by the jet is subject to a frictional force proportional 
to its velocity. In this case the differential equation is

(10)
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(11)

(12)

the integral of which is

1
(13)

may introduce abbreviations and write (13) thusWe

(14) B/4-C1

from which we get

(15)

the solution of which is

(16) = Bt —X

at the moment t = 0 we find

log nat

and

(17) AE

If P is small compared to 2 mu we get from (17)

(18)

dx 
lit

1
C1= A

— • <//m0

- log nat

Again we put = z thlls reducing (10) to

''■r = 0
dt

1 1 r £ —

A 10g nat ñ+

which may be written.
dz

B . I) + B ,, and co — —rvr- I) AE
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For p = 0 the last factor above assumes the shape log nat 
ni VIts actual value is found to be 1 + t, (18) being thus reduced to 
/7J0

(19) x = vt — - log nat ( 1 + )
m \ /7?o /

in agreement with (7) for u0 — 0 and xo = O.
Finally we may think of the body as forming part of a com

plete oscillatory system with a directive force kx. The equation 
of the motion then becomes

(20)

This equation will probably prove rather intricate unless it is 
assumed that -y is small compared to v. If this isthe case, we may 

/ dx\2 dxwrite mil? — ^1 = mv-— 2mv ' and reduce (20) to

(21) m0 + (p + 2 nw) ~ + kx — mu2 = 0 

thus to the well-known linear differential equation with constant 
coefficients. The problem of the motion is then easily solved and

1
I

it may be solved not only in the case of no external 
forces acting on the oscillatory system but also for a 
good many cases of such forces.

4. The Jet-Chain-Vibrator, translatory Type.
We may now imagine a disk I), fig. 5, hit 

centrally and perpendicularly by two series of 
jet-pieces JL and J2. We may term each of the 
series a jet-chain. The one of them 
is moving downwards with the velocity p, the 
other J2J2 upwards with the same velocity. In 
order to avoid confusion the two series have in 

Fig. 5. The 
Translatory 
Jet-Chain- 
Vibrator.

the figure been drawn sideways lo the axis of 
D. Actually we shall think of them as travelling 
in the said axis.
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(1)

and

(2)

to a Jt-piece

X — x0 r(3)

(4) V

for pieceand

æo _  

V

2

a J2

dx
~dt

dx 
dt being considered small compared to p.

Assuming /; = 0 and furthermore assuming that x — xQ,

— uQ at the moment of collision t — 0 we find for the
motion due

a • nw,

fig. 5,

 « + 2 t 
e ~r V

Each of the jet-pieces will, in colliding with I), give 
rise to an impulse. Every second impulse is directed up
wards, every second downwards. Thus D will assume a 

vibratory motion. If the displacement re, the velocity —- and 

the forces are considered positive in the downward direction 
the

— and cc, / and 2 are defined by p — 

, while 2 is the chain-length, compare

that due to a piece such as J2 by

d2x dx ! dx\2
"'«dF+/'di+tr=-nv+d/ r

Here Í7O =
2

m0 = rm->
Vidensk. Selsk. Math.-fys. Medd. IX, 4

motion due to a jet-piece such as Jt is determined by

d2x d.r / dx\2 J 2 dx\
m^ + P~dt+kx = "V“'m} = di)

(5> -4/2

«4-2 t
/ ’ Ï72dx

dt

<6> s
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and T = - . Bv means of (3)—-(6) we may calculate the 

motion of I). In so doing we must consider separately 
each of the parts or phases of which the motion is built 
up and we must carefully account for the position and 
velocity with which each phase is concluded. In fig, 6a — d 
a review of the first four phases has been given. In fig. 6a 
the start-moment is presented. I) is in the zero-position

1 r

il.
ab ed

Fig. (5. Review of Phases of the Motion.

and has just been reached by It moves downwards and 
after the lapse of the time /( collides with J2 which, 
coming from below, meets D. The latter is at that mo
ment at a distance away from the starting-position. The 
relation between .r, and tt is given by the formula.

(7) z —Z —= i)tt.

Fig. 6b gives the condition at the moment ti. .1 { has not 
completely passed I) or rather been reflected from it. Thus 
during the phase beginning at Zt, I) is acted on both by 
a downward and upward force. Its motion is determined by

the solution of which is
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X — X’o
(9)

(10)

if X —

fig. 6d. The relation between Z3 and

to tig. 6c. In fig. 6d it is assumed that D has not

(15)

(16)
o &

dx— = u0 at the beginning t = 0 of the phase.

C> • -Í

both referring to fig. 6b. The situation after this is that 
indicated in fig. 6c. JL has completely passed J) which now 
in the following third phase is exclusively acted on by J2. 
The motion is thus determined by the equations (5) and 
(6). It lasts till the moment Z3 corresponding to the posi
tion x3 indicated in 
x3 is given by

(13) Z2 =
(14) i>/3 = I-

t
T/2

referring
yet reached J/ at the moment Z3 at which J2 has passed 
D. If this assumption proves to hold good, a phase sets in, 
the fourth phase, during which D is not acted on by any 
piece of jet. Its motion will therefore be given by

d2x dx .

x — x^  Y 
~í¡r - ~ u"7<

«4-4 
tZx r t y
dl = l^e ’

æ0 ’

The second phase ends at the moment t2 and the posi
tion x2. The relation between Z2 and x2 is given by the 
formulae
(11) Z1 = 2Z+2x1 —2
(12) pZ2 = Zt + (x2 — x\) = 2 Z!- xt + x2 — 2

the solution of which may be written
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provided x — x0 and — = u0 at the beginning of the 

phase t = 0. In the way indicated the motion may be 
built up from phase to phase. By way of illustration the

first phase has been reproduced in fig. 7 corresponding to 
a series of values of a. It has been assumed that the 

2
length ol the jet-pieces is and that / = 1 . The straight 
line which determines the end of the first phase is, ac
cording to fig. 6 a, given by

æi = Ji_
2/2 772’(17) 1
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Furthermore the second phase corresponding to a = 5 is 
indicated. It is seen that the velocity obtained by D during 
the first phase is lost very soon due to the comparatively 
heavy damping. The velocity is however not completely
reduced to naught at the moment /2 which is determined 
by the point of intersection between the curve and a 
straight line

(18)

After this the action of J2 will turn the velocity and nearly, 
but only nearly, carry 1) back to the starting-position. 
From what has been set forth it may already be concluded 
that the motion will consist of a series of vibrations dis
placed laterally with regard to the starting-position. The 
lateral displacement is of course due to the first impulse 
giving D a downward deviation which cannot be com
pensated by the following impulses.

5. The Jet-Chain See-Saw.
We shall now consider a jet hitting one end of a ba

lance or see-saw with the moment of inertia J, fig. 8. The 
jet has the velocity v and the mass m per cm. It meets 
the see-saw at a moment at which the latter has an

angular velocity-— and is deflected dt
ft from the normal position perpendi
cular to the jet. The velocity of 
the hitting point is consequently 
n = —-— • —During the time-inter-cos ft dt °
val dt the bar is hit by the mass 
mdt (v—i)' cos ft) and the relative 
velocity perpendicular to the bar, 
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thus (n cos 6 — v), is destroyed. This means that the bar 
is acted on by a perpendicular force

(1) F = m (n— v cos ft) (/> cos ft — //)

and by a turning moment

(2)

We shall assume ft always to be small enough to justify 
us in putting cos2 ft = 1. We then simply have

(3)

.c d6 . ,, .or it a - is small compared to u

(4)
dft\ 
dt )

Obviously the problem of the motion of the bar is now
just the same as that of the motion of the disk above. Thus if

the see-saw ..i,. df) .is acted on by a damping moment —p-^and

by a directive moment — /ift, the differential equation of its
motion is

(5)
d2ft
dF + (p — 2 in a'1!))

Replacing here I by zn0, ft by x, a by 1 and k by h we 
have come back to equation (21) on pg. 1(5.

We may now study the motion of the see-saw when 
lhe latter is alternately hit by the jet-pieces of the
two jet-chains in fig. 9. Just as in lhe motion considered 
above we have to build up the solution of the problem 
from phase to phase. If we assume /? to be zero, we might 
simply use the equations from the problem above intro
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ducing 0 instead of x, I instead of m() and so on. In the 
following examples we shall, however, also put p = 0 and 
then go back to the exact formulae based on (3). These 
formulae have in part been developed above on p. 13—14.
A review of them corresponding to 
the first five phases is given in 
tab. I, the indications of which refer 
to fig. 10. The figures of the latter 
represent the same phases.

By means of Tab. I in connection 
with fig. 10 we may study the mo
tion in the case of m = 1.70 g/cm 
(diameter of jet 4 mm), v — 600 

cm/sec, I = 5 cm, = 6 cm, 

a = 3 cm, I = 460 g/cm2. With 
, ma2 Z these constants —----- — = 0.2, and

consequently the approximative for
mulae in tab. I may be applied.

T z/2The result is reproduced in fig. 11 A where — — . As1 0 2d
wi 11 be seen, the time elapsing from JL meets the bar to
J3 collides with it at the moment Z4 is only slightly greater 
than a period T namely 1.06 T. But at the said moment 
the bar still possesses most of the positive deflection ob
tained. The period ending with only a very small negative 
angular velocity, it is obvious that the succeeding part of 
the curve must nearly be identical with the part already 
drawn. Furthermore in tig. 11 B a curve is drawn, which 
shows what the motion would be if we simply neglected 

the velocity of the see-saw thus the damping force 

due to the jet itself. The motion is then represen
ted by
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*7

Fig. 10. Various Phases of the Motion of the See-Saw.

(6)
Ihus by

(7)

(8)

mai)2

dû 
dt

ma i)2
I

1

2

m a D
I I2 + zot + Oo

fly and r0 being the values of 0 and at the moment 

t = 0. Obviously the motion has the same general character
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as the actual motion but the deflections are essentially 
larger, showing the great damping effect of the jet.

Finally in fig. 11 C the motion of the see-saw when 
acted on by a purely periodical moment

(9) M = mirciQ sin cot,

7T
is represented. It has been assumed that o0 = W0» a being 

the arm in fig. 9. The motion is thus given by

d2 Ö
(10) 7//2 = nw2u0 sin wf
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T a b e 1 I.

Phase

(1)

(2)

3
(3)

(4)

(5)

2 /7in2Â/20) e
I

(2)
2V(3)

I\ a
(4)

V(ô) I a

2
3

mas / V

0
Complete Expressions

1 ma2À/2 À/2
2

0
Approximate Expressions

2 I
1 ma3
ÏÏ I

a (hW-
1 4 ma2 Z/2

° — °1 + ~1 . o
4 ma¿‘ V

c/0

dt

1
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Tabel I.

Phase

(1)

(2)

(3)

(4)

is»! =

tgö-2 — (eia + j— I ) tgdl

tg 03 = I 2 — vt3\ ■ « — tg 02

(«»< =

h = 2 a Z(/01-|- Z — 2

Â
1-2 = 2 — 2 a tg 02

the integral of which is

As will be seen, the C-curve nearly coincides with the 
B-curve. From this we conclude that we might in the 
actual problem get a similarly good approximation by 
identifying the action of the two jet-chains with the action 
of a moment (9) combined with a damping

(12) p =■ 2ina2v.

The equation of the motion would then be

(13) mv2 a0 sin mí = Mo sin w/.

The solution of this equation is

(14) o)|/'(W + p2
, Imsin w -j----- cos

P

— sin 2/ry + (f)

where tqw — ~—
I M
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By means of this formula the curve D was computed. 
It shows a practically good agreement with A. Thus our 
conclusion is justified for the case considered. We shall 
preliminarily — as a hypothesis — assume that what has 
been found true for the first transient part of the motion 
will also hold good for the final stationary motion and that 
the motion of the see-saw vibrator may on the whole in most 
cases and also when an external damping p and a directive 
moment 7i is acting, be solved as a continuous problem 
by introducing the fictive moment (9) and the fictive 
damping (12). The problem has in this way been reduced 
to the ordinary problem of vibrations under the influence 
of a harmonic external force or moment. It should be 
noticed that the a0 introduced in (9) is chosen in such 
a way that the actual arm a is the mean value of 

a0 sin (o f • = a0 • —.

In the example above the equation (14) becomes

6 = 0.0630
t

— 0.798 •
7.92 —7.79e T

In order to put our hypothesis to further test a new and 
rather extreme case was considered, namely

m = 1.70 g, V ~ 600 cm/sec, / = 6 cm, 
u = 3 cm, I = 18.36 g/cm2

2, = 6 cm,

thus a much lighter 

the former example.
system, ---- —---- being 5 against 0.2 in

This change implies that the approxi
mate formulae in tab. I can no longer be used but recourse 
must be had to the original formulae. It furthermore in
volves that the moments limiting the various phases cannot 
be found as the abscissae of the points of intersection
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between the 0-curve and certain straight lines. It is neces
sary to replace the 0-curve by the corresponding curve for 
tg6 in the way indicated in tig. 12 by the dotted curve
branches. It appears from the latter figure, in which the 
motion is represented by the A-curve that the damping due 
to the jets very soon after the lapse of the first phase 
checks the velocity and reduces it to naught. During the

e

rest of the second phase there is balance between the 
forces with which the two jet-pieces act on the see-saw. 
The third phase is very short but the jet-piece J2 is never
theless, during this phase, able to communicate a con
siderable velocity to the see-saw. With this velocity the 
latter moves on in the following fourth phase during which 
no jet-pieces act on the see-saw etc.

Applying now our hypothesis indicated above to the 
case of fig. 12, we find that the equation picturing the 
motion should be

ft = 0.477-
— 20.1

1.048 — 0.094 • e
r —sin^27ry+72° 36'

This relation is represented graphically in fig. 12B. Obviously
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the discrepancy between the two curves is now much 
more prominent than in the former case. The general 
character of the two curves A and B is, however, in some

Fig. 13 a b. Nature of the Substitution.

measure the same. We 
shall therefore, not
withstanding the di
vergences in such ex
treme cases as that 
just considered, as
sume that a fairly good 
approximation to the 
actual motion may 
generally be obtained

by our method of substitution. We shall see in a following 
chapter that if the see-saw is hit by a jet-wave of sine
shape like that indicated in tig. 13a and if this wave is 
produced by a jet of velocity v and mass per cm m then
the moment acting on 
the see-saw will just be

(15) M — mv2 u() sin w t 
provided the bar is 
kept in its normal posi
tion perpendicular to 
the axis of the wave. 
Under the same supposi
tion the moment origi
nating from the jet

1 1_

Fig. 14 a b. Substitution in Case of Trans-
latory Vibrators.

chains . . J2A • • W^1 be that indicated in the upper
most figure in fig. 13b. Our substitution is thus to the ef
fect that we replace the jet-chain with the sine-wave when 
considering the motive moment, while we keep the jet-chain 
when considering the damping moment.
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Returning now for a moment to the jet-chain vibrator 
of the translatory type, there can be but little doubt that 
a substitution similar to that above may be applied in a 
good many cases. Thus with the twin-jet vibrator in fig. 14 a 
the disk J) is, if kept in its zero position, acted on by a 
motive force like that represented in fig. 14a. We may 
probably substitute for this a harmonic force

(16) ,■ 2 ;r = mu- sin wi

combined with dx a damping force 2 mi) — And in the case

fig. 14 b where the motive force
. . p P mi)2consisting ol a constant torce 9 

p p . mi)2 ~nating torce ol amplitude “the

may be considered as 
and a rectangular alter- 

1 alter may probably be

replaced by

(17)
nur

2 9 • sin M t.

6. General Formulae of Motion of an oscillatory System.
Having reduced the problem of motion under the action of 

a jet-chain or a twin-jet-chain to the problem of an oscillatory sy
stem acted on by a simple harmonic force or moment, it seems 
appropriate to review the formulae governing the motion in the 
latter case.

Accordingly we consider the well known equation

(1)
r d20 , dä , , ,, ■ ,Z -f- p + h 0 — Mq sin M t.

If (2) p2 < 4//1,

the complete solution is

(3)

(

I

cq sin |/4Z7i—p2
21 t + «2 COS

|/4 Ih — p21
21

Mp .
+ y^h—I^ + ipta')2 sin

where
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(4)

and where «i and a2 are constants to be determined by the 
(lavalues of ö and at a given moment say t = 0. We shall, however

here coniine ourselves to the stationary part of the motion re
presented by the last term of (3) and characterized by the condi
tion (2). Introducing the parameters

(5) ll = a I co2, (6) pa) — ¡ilct)2, (7) M0 = ylco2

we may write the expression for the amplitude
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(8)
and
(9)

In fig. 15 the function (8) has been drawn for / = 1 and for 
four values of ß, furthermore for the interval of a from 0 — 2 
which thus includes the case of resonance « = 1. By means of 
the set of curves the absolute value of do may be determined for 
any case within the a — and ß — intervals considered. One only 
has to multiply the value of d0 taken from the set by the /-value 
corresponding to the case in question. The branch A very nearly 
determines tg <p corresponding to ß = 1 and so the value of tg<p 
for any value of ß. Of considerable interest is the question about 
the change of amplitude due to a change of frequency. In order 
to find the relation we shall have to differentiate the expression

/ft)2)2-|- (pw)2

with regard to w. The result may be written.

.... A dp _  2 (a — 1)4- 42
u ' do ~ (a —1)24*^2 ' « •

In lig. 16 is represented in its relation to « and ß. For
do I

instance we find from the curves that the ratio has the value 
— 2.8 corresponding to a = 0.3, ß — 0.1. Thus an increase of 1 per 
cent of the frequency gives rise to a drop 2.8 per cent in the ampli
tude. The larger the damping the more independent of the fre
quency is the amplitude. — Almost as important is the relation 
between Atgcp and Aw. It is determined by differentiating 

(12) 

and is found to be

(13) J tøø) = ß 1 4" a A to
1 — a 1 — a to

The dotted curve in fig. 16 represents A igep I—— corresponding 
to ß — 1. If for instance a = 0.3, ß = 0.1 an increase of 1 per cent 
in to will cause a decrease of tg<p equal to 0.1 -2.7-Jqq — 0.0027 
while tgcp itself is seen from lig. 15 to be 0.144.

Vidensk. Selsk. Math.-fys. Medd. IX, 4. 3
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7. Some special Relations characteristic to the Jet-Chain 
See-Saw.

Returning to the special case of the see-saw we shall
assume the latter, fig. 13a, to be acted on by a directive
moment hH and by a frictional moment Po ..Its difïe- dt
rential equation then is
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(1) 7 + Z?)

and its motion, when it has become stationary, will be
expressed by

(2)

where

3 =

mv2a 7t

2
=. sin2
(ft

= 3(} sin (ft) / + y)

j/(h — /to2)2 + (p + 2 ma2 p)2
(ft) t + ÿ)

We shall in particular examine the amplitude and may 
by reason of the comparatively large effect of the damping 
due to the jet itself neglect the external damping. Then

2 '7mir a • -
, , _ 2 _ n V

° |/(/i —/(ft2)2 + 4 m2a4p2ft)2 2 1/ A2 , zo A2
/ 7 ?2 + (2aft))2

I (mva)

From this expression, in which A = h— Im'2, it is seen that 
with a given oscillatory system the amplitude 30 will vary 
practically proportional to v when this latter quantity is 
raised above a certain limit. Furthermore, that with an 
increase of m, 30 approaches a definite limit, namely

(4) 1
°’ni _ 8 a

1 Z
8 a

and that finally there may be a certain value of a, which 
makes 30 maximum. This value is in the ordinary way 
found to be determined by

(5) am
J 2 ft) mu ’

We may introduce the natural cyclic frequency ft/ of
3
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Fig. 17. Øø — V, 0o — ^--Curves.

A ûtr—

Fig. 18. 0o — d, 0Q — d2, 7îi — d-Curves.

A J’ ¿¿o, tv c ■- 600 cn^Àe/i, extent, wf=jcu 

P: if ísOfí



The Jet-Chain- and the Jet-Wave-Vibrator. 37

the oscillatory system. This 
|/y. We may thus write

quantity is

(6)

determined by

We may finally write (3) as

If we introduce here the value (6) for a we find the maxi
mum of

(8)
TT 1

0, 7/1

where the numerical value 

be used. From (7) we see 

of the quantity 
that if m' = M,

is to

i. e. if there be
resonance,

(9)

We thus get the same value of the amplitude as that to 
which the latter approaches when m- or /^-increases beyond 
all measure, and what is highly interesting, a value quite 
independent of all parameters except Â and a.

In order to illustrate the conditions indicated above, 
curves for the variation of the amplitude 0O with v, m 
and a were calculated. They are reproduced in tig. 17 —19 
and as will be seen correspond to two rather different 

systems, one heavy with a frequency only - of that of 

the turning moment acting on the system, and another 
comparatively light and with a natural frequency equal to
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9
— of a). In the first case fl() is nearly proportional to ir, m3 2
and to a. In the latter case the damping member in 

(7) plays a considerable part and we therefore see that the

Hq—/’-curve for greater values of v approaches a straight 
line, while the 60-d- and so the —m-curve approaches 
the constant value 0.5 and the H—a-curve exhibits a very 
pronounced maximum.



The Jet-Chain- and the Jet-Wave-Vibrator. 39

II.

The Jet-Wave-Vibrator.

1. The Vibrator with a Jet-Wave of constant Amplitude.

We will consider the motion of a balance or see-saw 
B, fig. 20, hit by a jet-wave J of constant amplitude a0. We 
assume the axis of the wave to pass through that of the 
balance 0 and to be perpendicular to the latter. We shall first 
derive an expression for the moment with which the jet
wave acts on the see-saw, when the same is kept in its 
normal position perpendicular to the axis of the wave.

The particle ds of the wave contains the same mass 
of liquid as the element dx of the jet from which the wave 
is made, dx being the projection of ds on the axis of the 
wave. The mass referred to is thus m-dx if m denotes the 
mass per cm of the original jet. It moves down against 
the bar of the see-saw with the velocity p of the original 
jet, carrying with it the momentum irivdx. In the course 

of the time all the momentum perpendicular to B is
V

destroyed. It means that the bar is acted on by a force

CD nw • dx
(dx/ u)

nu>2.

The corresponding turning moment is

(2) M = mp2a.
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Now (i varies with time according to

2 7T(3) a = a0 sin - t = aosin«i.

Thus
(4) M = nur a0 sin w/.

We will now suppose that the bar is kept in a position 
forming the angle H with the normal position. Again the 
component of the momentum perpendicular to the deflected 
bar is destroyed during the collision, thus inn cos H • dx. 
But the time required for the destruction now greatly 
depends on the element, as will be seen from fig. 20 a. The 
element c/s will not have “passed” the bar completely until 
the moment when a reaches b. It means that the collision 
lakes the time

(5) dt = dx — dy ■ tg H
i)

dx
i)

perpendicular to the bar thus becomesThe force

1
(6)

2

the jet-wave at a given moment t

cos 2 71

b

= a0 sin 2>t

9 T ,*- 1/2 2

we get

Now the equation (
may be written

(7) y

from which

(8)
dll 2 71

' = — «o ‘ ~^r dx k

Introducing this in (

(9) u 27 „ =
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Now the turning moment M is F -a = F;| y/cos H, thus

(10) M = in v2 Â •---- —---- ---------------
l+~;~ tge]/a2 — y2.

Finally we may take the zero-point of the system of co

Fig. 20 a

Fig. 20 b

Fig. 20. See-saw hit by a Jet-Wave of constant Amplitude.

Fig. 20c

ordinates to coincide with O, tig. 20. Then .r = ytg6 and 
from (7) we get

(11) y = a0 sin 2 n

If we want to express A/ as a function of the time t, we must 
solve (11) with regard to y and afterward introduce the 
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result in (10). The practical way to produce a picture of 
the relation between M and t is first to calculate, by means 
of (11), t corresponding to a number of values of y. The 
result may be represented in the shape of a curve showing
y r ■ .. t— as a function of —. 
«0 I' 

Furthermore a curve must be pro-

y -- ta 6)
CQ-X-l

duced representing J/ as a function of y, thus the graphical 
picture of (10). Now combining the two curves, a picture 
of M as a function of t is easily obtained.

We shall here confine ourselves to illustrating what has 
been said above by means of the curves in fig. 21 , re
presenting the function (11) for three values of H and for 
a0 = /, = 1 . The curve corresponding to ft = 0 is of course 
the simple sine-curve. The curves for ft = 20 and ft = 40 
exhibit a number of values of y corresponding to the same 
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value of /. The explanation is very simple. For if the de
flection of the balance B in fig. 20 is sufficiently great i. e.
greater than 0 , then the bar is cut simultaneously in 
several places by the wave. It may be noticed that 6 is 
determined by

(12) ta» =
J m

).
2 tt a0

or if 2 = a0, Hjn = 9° 3'.

The expression (6) may be obtained in a somewhat different 
way as indicated in fig. 20b. The element of the jet-wave is here 
confined between two planes parallel to the surface of B. The 
momentum of the element is, with the indications of the figure, 
vqS" z cos H (o the density of the liquid). The particle disappears 
into B in the course of the time Thus the force perpendicu
lar to Ji is S" t>2 cos2 0. Now it appears from the figure that 
S" = S'/cos (p— 0) if S' is the area of the normal cut through 
the wave-element. Furthermore S' — So cos p, So being the cross
section of the original jet. Thus

(13)

„ COS
0 cos (p — 6) V2 COS2 0

= nw2 cos 6 cos d cos p 
cos (p — 0)

= mu2 cos ö ___ 1____
1 + ig p tgf)

which expression is identical with (6), tg p being equal to —j .
It may be remarked that our method of calculating the force 

and turning moment fails if 

(14) 

for in that case the expression (6) gives FH = oo. The case re
ferred to is that indicated in fig. 20c, i. e. the bar has become a 
tangent to the wave-element. Of course the force or moment is 
not infinite. In order to obtain its actual value we only have to 
employ another method of dividing the wave into elements, thus 
for instance that indicated by the double hatching. We shall not, 
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however, bother about the problem, it being practically of very 
little interest, even though we shall meet with it in some of the 
examples presented in the following.

In case of the deflection V being so small that we may 
put cos 2tt ^4— = 1, the expression (11) may be replaced by

(15)

from which we find

(16)

(17)

ÍZIf finally 4 n-ytgO is small compared lo 1

V 2 • 2yr ,
M — mv a0 sin • t

Introducing in (10) after having replaced ]/a%—1/~ by 
2 7Ta0 cos -y- t we get

t
a0 sin 2;r ;

! , 2ntg6 t1 + . crn cos 2n —k I

i. e. in the first approximation the moment is independent 
of 6*.

We may now write down the differential equation for 
the motion of the see-saw in the latter case. In so doing 
we shall replace v in (17) by the relative velocity nr which 
is determined by

/lox de . de(18) = p —y .—= n-«0 sm wf-— .
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Thus

(19)
777 ir a() sin w / — 2 ma^ v sin’2 w i • de

(It '
And the equation in question becomes

(20) I + (p + 2 ma¡ v sin’2dr
sin (f)t

provided the see-saw has the character of an oscillatory
system with a moment of inertia I, an external damping

(21)

and a directive moment he. If p = 0 we may write

+ /7?«o V (1 — cos 2 w i) + he — liw1 a0 sin m t.

The coefficient of —-, i. e. the damping-factor, thus varies 
dt

with time. Its mean value is ma^u. Probably it will prove 
difficult to solve the complete equations (20) or (21) but it 
seems likely that we shall obtain a fairly good first ap
proximation by simply neglecting the variations of the 
damping, i. e. by solving, in the case of p = 0, the equation

The problem has thus been reduced to the ordinary pro
blem of the motion of an oscillatory system under the 
influence of a harmonic moment.

It is interesting to compare the present system with the 
oscillatory system acted on by a twin jet-chain. In the 
latter case we substituted for the jet-chain a jet-wave, the 

7Tamplitude a0 of which was — times the arm a on which 

the chain acted. At the same time we kept the damping 
factor 2maiv, of the jet-chain action. Now, when the 
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oscillatory system is actually acted on by a jet-wave we 
keep its motive force, mir a0 sin i»t, but replace its damping 
by the damping of a twin jet-chain, the arm of which is 
a — -^= (riot u0-—, which might have been expected and

|/2\ * . «0\
which is not very different from j • On the whole lhe 
problems of the two kinds of motions have been reduced 
to one. Thus it will not here be necessary to repeat the 
discussion with respect to lhe amplitude which has already 
been given in the treatment of the jet-chain-vibrator.

2. The Turning Moment in the Case of a Jet-Wave of the 
circular Type.

We shall next consider the see-saw hit by a jet-wave 
of the circular type i. e. the wave which may be produced by 
the interaction of a constant magnetic field and an altern
ating current passed through a conductive liquid-jet. The 
characteristic property of this wave may be said to be that 
an element ds, fig. 22, of the wave contains the same mass 
of liquid as does its circular projection dr of lhe original 
jet. The equation of the jet-wave at a given moment t may 
with polar coordinates r, a be written

(1) sin a = sin «0 sin

On the basis of similar considerations as in the case of 
the wave with constant amplitude we derive for the force 
perpendicular to the deflected bar lhe expression

d r(2) F = mir cos (fl + «) • ------ —n dr — d-

being the time which it takes for the element ds

to “pass” the bar. The turning moment corresponding to Fn is
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(3) M = F„ •

thus

(4)

It is now seen

COS fi

(6) d cc

r° cos (a +

cos 6 • sin (a + ti) 
cos2 (« + 6) ’

Introducing in (4) we get

(7) M = nur r0 sin a •
1

1 + r0
cos 6 sin (a + ft)

cos2 (a + 6)
d a '
dr

The value of d a 
dr is found from (1):
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o rø

COS (C V V
Th us

1

cos 2 (« + 0) cos cc

If a and H are

r
(10)

(9) Af = mir r0 sin

1-?
Z

et------------------------------------ -
1 2TT — cos ß sin |zsin2 «0—-sin2« 

both so small that we may put cos a, 
cos H, and cos (« + 0) = 1 and if/o. 2 n is not too great, 

the expression (9) may be written

Now, if in the general case we want to lind the moment 
Af as a function of the time t, we should first introduce 
the r taken from (5) in the expression (1), thus obtaining 
the equation

w r0 cos ß
i) cos (« + ß)(11) sin« = sin «0 sin

The latter equation should then be solved with regard 
to « and the result introduced in (9). Actually the problem 
must of course be treated in the manner indicated above. 
I. e. first we shall ascribe a number of values to « in (11) 
and find the corresponding values of /, afterwards repre
senting « graphically as a function of t. Next we shall by 
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means of (9) produce a graph of M as a function of a. 
Finally, combining the two graphs, we may draw the curve 
representing the relation between M and t corresponding to 
the angle 3 of the deflection in question.

We shall now illustrate the production of the M—/-curve 
by an example. We choose the case 3 = 20 , a0 = 0.5,

~ ■ = 1 from which = 2/r^ = 2/r. In fig. 23 the wave 
Z V k
has been drawn in a series of positions. In the picture, 
the construction of which we shall not here explain r), the 
deflected bar of the see-saw is indicated as B B. Tab. I 
first shows the numerical determination of the relation 

between a and t or rather — given by (11). The two solu

tions of (11)

(12)
cos 3 \

cos (« + 3)]

. ( sin a arc sm ——\sm «o.

tv — arc sin sin a 
sin «0

*) Compare: The Jet-Wave. Vidensk. Selsk. Math.-fys. Medd. IX, 2. p. 35.
Vidensk. Selsk. Math.-fys. Medd. IX, 4. 4 
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obviously correspond to the two intervals 0—a0 and «0—0. 
Tab. I is represented graphically in tig. 24. The curve ex
hibits up to three values of « corresponding to certain 
values of t. This will be understood from fig. 23 which 
shows that the bar with certain positions of the jet-wave

cuts the latter in three points. It may furthermore be noted 
that the construction in fig. 23 may be used for a direct 
determination of the curve in fig. 24. The waves drawn 
correspond to positions equidistant with regard to time. 
Thus if we draw the radii to the points of intersection 
between BI3 and the wave-pictures and measure the a’s of 
the radii, we have « as a function of time. In this, not 
very accurate, way the points in fig. 24 marked by crosses 
are determined.
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The next part of our problem consists in the numerical 
and graphical determination of the M—«-relation given by
(9) and originating from (4). In the calculation a certain 
account must be kept of the sign of the members in the 
denominator of (9). The simplest way to do this is probably

to inspect a construction like fig. 23. In tab. II some of the 
results of the numerical determination have been recorded 
and in fig. 25 the complete M—«-curve is drawn. There is one 
remarkable thing about the curve, namely that, corres
ponding to two values of «, it exhibits infinite values of 
M. In order to understand this we shall again have to in
spect fig. 23. From this figure it is seen that, corresponding 
to two values of «, the jet-wave will touch B B. (The 

4* 
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points a and h). When this occurs we have seen that our 
theory of the mechanical force and of the turning moment 
fails. Thus the two points of the curve in fig. 25 are not 
to be taken seriously. However, we shall not try to deter
mine the curve-branches by which they ought to be re-

in

placed, these singularities playing only a small part in the 
final result.

This is reproduced in lig. 26, which thus represents M 
as a function of t. Obviously M may at the same time 
exhibit up to three values, actually, however, the three 
values combine to one which is obtained by simply ad
ding the components. This has been done and the re-
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Table I.

(1)

a

(2)

«

(3)

sin «

(4)
sin a 
sin ao

(5)

U' -
\ T c

(6)
cos 0 \

os (a 4-0)/

0 0° 0.0000 0.000 0° 0.000
0.1 5°44' 0.0998 0.208 12° 3' 0.210
0.2 11°27' 0.1985 0.414 24°27' 0.427
0.3 17°12' 0.2957 0.616 38° 3' 0.664
0.4 22°54' 0.3891 0.812 54°18' 0.948
0.5 28°36' 0.4787 1.000 90° 1.571

(1)

a

(7)

COS (« + 0)

(8)
cos 0 

cos (a -f- 0)

(9)
6°
2 71

(10)
t
T

(ID
0.5

— (9)

(12)
t 

~T

0 0.940 1.000 0.0000 1.000 0.5000 1.500
0.1 0.900 1.048 0.0334 1.081 0.4666 1.515
0.2 0.853 1.105 0.0680 1.173 0.4320 1.537
0.3 0.797 1.181 0.1059 1.287 0.3941 1.575
0.4 0.733 1.285 0.1511 1.436 0.3489 1.634
0.5 0.661 1.422 0.2502 1.672 0.2498 1.672

0 0.940 1.000 0.0000 1.000 0.5000 1.500
— 0.1 0.969 0.971 — 0.0334 0.938 0.5334 1.504
— 0.2 0.989 0.951 — 0.0680 0.883 0.5680 1.519
— 0.3 0.999 0.940 — 0.1059 0.834 0.6059 1.546
— 0.4 0.999 0.940 — 0.1511 0.789 0.6511 1.591
— 0.5 0.989 0.950 — 0.2502 0.700 0.7502 1.700

sultant M—¿-curve in fig. 26
hatched area.

is that which limits the

We shall now explain our reason for spending a good 
deal of time on the problem of producing the M—¿-curve. 
It was done in order to find the cause of a characteristic 
property of the see-saw hit by a circular jet wave. Prelimi
nary observations showed that the see-saw without any
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directive moment will always oscillate about a position 
perpendicular to the axis of the wave. Thus the system 
has in a way a directive moment of its own. Now the 
hatched areas over the J, axis in fig. 26 represent the time

uv a -sut, a, sut ?îrfy - gffîfoÿ» ■ /

integral of the moment which will increase the deflection 0, 
while the area under the axis corresponds to the moment 
which will reduce the deflection. The areas were measured 
by means of a planimeter. The results are written on the 
areas, and it is seen that a time-integral of ab. 34.3 tends 
to reduce 0 while only a total time integral of 23.5 tends 
to increase 0. We thus understand the tendency of the bar 
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to return from a position of deflection to the position 
perpendicular to the axis of the jet-wave.

This tendency, however, is only pronounced if both «0 
and the deflection H are not too small. Thus if «0 = 0.25,

ot.
AZ

1 
ó'--#?“’

A 1 \

A
O. *

ff q
ta /

it“ /
Of Sr

3 -ú * -a / 2 O a

IV/
Of

cz*

Oi

Fig. 28. M—«-Curve, «0=0.25, 0=20°, j = 1.

H = 20 , we find the three curves shown in figs. 27—29. The 
a — /-curve is now single-valued, and the difference between 
the two time-integrals is much smaller than in the case 
a0 = 0.5, H = 20 . However, it is interesting to note that 
the mean values of the two integrals in the two cases only 
differ very slightly, the mean value in the case «0 = 0.50 
being 28.9, while in the case a0 = 0.25 it is 30.5.
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Investigations similar to those indicated above were 
carried out for 6 = 0, thus for the see-saw in its normal 
position. Fig. 30 shows the M—t curves corresponding to 

a0 = 0.5, 0 = 0, and to ~° equal to 0.5, 1.0 and 1.5 re

spectively. One of the curves has for obvious reasons been

nt>\

reproduced in two scales. Fig. 31 represents similar curves 
corresponding to the case r<0 = 0.25, 0 = 0. Of course 
there is no longer any difference between the moments 
acting on the right-hand and left-hand side of the see-saw. 
The curves afford a direct conception of the relation between 
the time-integral and the parameters «0 and r0. Thus from 
fig. 31 it is obvious that in the case «0 = 0.25 the lime
integral is nearly proportional to r0, the three curves re-
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presentins —«— having about the same area. In the case 
1 ' mirr0
a0 = 0.5 things are different. Here the time integral seems 
roughly independent of r0, as appears from the representation 
in fig. 32 where the ordinate is —,— • ^°. Further

ing Z mu r0 k
more it is seen from a comparison between fig. 30 and

Fig. 32. M—/-Curves, «o = 0.5, 9 = 0.

-Mmu'3 À.

fig. 31 that for y = 1 there is but a comparatively small 

difference between the time-integrals, the latter thus varying 
only slightly with cc0.

3. Motion of the See-Saw under the Influence of a Jet-Wave 
of circular Type.

It is evident from what has been stated above that it 
would be practically impossible to develop an exact theory 
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øf the motion of the see-saw under the influence of the
circular wave. But we may

Fig. 33. Substitutes for the circular 
Jet-Wave.

try to solve the problem ap
proximately by replacing 
the actual system by 
some other system. We 
may suggest the follow
ing. Firstly we shall 
substitute for the wave 
a pure sine wave J', 
fig. 33, travelling with a 
velocity v in a direction 

under an angle with 

the axis of the actual jet
wave. We shall ascribe 
to the jet, from which 
we may suppose J' to 
originate, the mass m' per 

cm where m = m cos . 

Now the problem of the 
motive moment has been 
reduced to that already 
solved in the case of a 
wave with constant am
plitude hitting a bar de

flected the angle ~ . If 

is sufficiently small 

the motive moment may 
be expressed by 

(1) M — ni'ira0 sin tot = nw2a0 cos —5 • sin æt.

This expression agrees with that which we may derive from 
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(9), paragraph 2, on the assumption of Ö = 0 and a0 being
sufficiently small. For then M — nw2r0 sin a = nw2r0 
sin a0 sin wt, where, compare fig. 33, r0 sin a0 «0

«o cosy •

Now again, when developing an expression for the 
damping, we shall replace the sine-wave by a jet-chain, a 
link of which may be J", fig. 33. We shall assume the 

arm of the chain to be .°-. The mass per cm of J" shall
« 12be in' = in cos t)(>. If the see-saw is moving with the 

i / 6angular velocity — the relative velocity of ./" with respect 

to the hitting-point of the bar B of the see-saw is 
(n —acos-y- fig. 33, and the force perpendicular to 

B originating from J" is

(2) m

Thus the moment is

• a
(3)

dt ’

de(4)
dt '

Replacing

F
n

2 ^0 cos- 2

2 «0 cos2

2 2 «0 o 2 3 «0nw a cos —— 2 mu a cos ~-L

■i r  2^0 “ 0 2 0M = mvu-p • cos -7^ — nwaZ cos ~~
|/2 2 0 2

a by ------—------ we find
l'2-cos^S

We thus ascribe to the actual wave the motive moment

(5)

and the damping moment
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M' — —mvaf, cos «o
2

de 
dl ■

If the see-saw has the moment of inertia I and the direc
tive moment A, then the amplitude eQ of its stationary 
motion should he 

(7) 0o =

and if h = I(»2 (case of resonance)

2 «0mu a0 cos —

(8)

4. The Turning-Moment with a Jet-Wave of 
rectangular Type.

Finally we shall consider a see-saw hit by a jet-wave 
of rectangular type, tig. 34. Such a wave or a wave of 
nearly that kind may be produced by oscillating the nozzle 
of the jet in such a manner that the axis has always the 
same direction. While in the case of the jet-wave of the 
circular type the radial velocity is always the same and 
equal to the velocity v of the original jet, then with the rect
angular type it is the velocity-component in the direction 
of the said jet which is equal to v. We proceed to develop 
an expression for the moment with which the jet-wave 
acts on the see-saw.

The element ds of the wave now contains as much 
liquid as its projection dx on the original jet, thus m-dx. 
It carries with it a momentum mvrdx, vr being the velo
city in the direction of the path of the element i. e. the 
radius r. The component of the momentum perpendicular 
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to the deflected bar B is m • vr • dx cos (« + #). Now vr = 

and thus the said momentum is nw dx cos (« + 3)
cos a

V
cos a
This

momentum is destroyed in the course of the time

CD
Thus the force perpendicular to B and originating fronrthe 
impact of the jet-wave element is

(2) F„
9 cos (a + 3)nw---------- s--------cos"«

dx
— di\ + dr2 '

From fig. 34 it is seen that

(3)

and that

(4)

dx
cos «

sin 3
a

cos (« + 3)

r a
cos « ’
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From the first equation (4) we get

(5)

from which

1
da .

(8)

thus

(9)

dx '

the equation of the

(10)

from which

(ID

Iff a = tga0 sin 2 n

1 — xQ sin

The value of must be derived from dx
jet-wave which at the moment t is 

• n æo <7az = sin 0------ ——cos (« + 7)

„ 0 COS (a + 7)Fn = mu  cos a
1

(r\ j j - 1 . , sin (« + 0 \< o ) dz — aro = xn sin 0 ----o— —7— —<• 4- ta a---- ----------20 \cos2 ft cos (ft T 0) J cos2 (ft+ 0)/

Introducing in (2) we get

and for

1 — Xq sin 0 1 sin « sin (ft + 7) da
cos a cos (« + 7) cos2 (« + 0) dx

the moment in question

Introducing in (9) we get
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(12)

1
|z

From

sin a
(13)

sin a
(14)

0 we find from (14)

(15)

from (12)and

(16)

If we
(( and

may now carry ont the same investigation as was

tga = tga0 sin 2 tt

introduce this in (10), we get for the relation between
/:

M — nw2x0tga
1

tga = h;«0 sin 2/r

4f = nw2x0tga — nur x0 tg a0 sin 2tt

0 — tg2a • cos2 a .

We
undertaken in the case of the circular wave-type in order 
to learn whether in the present case we must expect the 
same tendency of the deflected bar to return to the position 
perpendicular to the axis of the jet-wave. We accordingly 

calculate graphs for the relations a— —, M—a and M—
t 1 1

Fig. 35 represents the M——-curve lor the case «0 = 0.25, 
T* *

H — 20 and ^° = 1. The time-integral of the moment which 

will carry the bar back to its normal position is but slightly 
greater than the time-integral which will increase the 
deflection. Undoubtedly the tendency in question is less 
pronounced than with the circular wave-type as will appear

Vidensk. Selsk. Math.-fys. Medd. IX, 4. ß

Í _X0
T 1

fig. 34 it is furthermore seen that

, . /. sin a \■T = 'r° + a Sln w + S"’ H cos (7+öJ ■
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_.V 
fíe utt.

Fig. 36. .1/—í-Curve, «o — 0.50, h = 20°, ° 1
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from a comparison between fig. 29 and fig. 35. The time
integrals themselves are, however, very nearly of the same 
size in the two cases. In fig. 36 the M----curve corres-

X *ponding to a0 = 0.5, 0 — 20 and = 1 is reproduced. 
à

Now the time-integral which tends to take the bar back 
to its normal position is undoubtedly appreciably greater 
than that — the area above the axis — which will increase 
the deflection.

With regard to the motion of the see-saw we shall in 
all probability not be far wrong if, with small values of a, 
we simply replace the actual jet-wave by a wave of con
stant amplitude ci0 — xotgao and with a velocity v, thus if 
we substitute a motive moment

(17) M = mi)2a0s\n (at

and a damping moment

(18) a dHM = —nwa0^
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